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Velocity statistics in two-dimensional granular turbulence
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~Received 8 July 2002; published 22 October 2003!

We studied the macroscopic statistical properties on the freely evolving quasielastic hard disk~granular!
system by performing a large-scale~up to a few million particles! event-driven molecular dynamics system-
atically and found it to be remarkably analogous to an enstrophy cascade process in the decaying two-
dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system,
which are homogeneous, shearing~vortex!, clustering, and final state. In the shearing stage, the self-organized
macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the
expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson
law.
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The dynamics of granular materials becomes one of
most important topics in the studies of nonlinear, dissipat
and nonequilibrium statistical physics@1#. Granular media
are collections of macroscopic particles with rough surfac
and dissipative and frictional interactions. The granular s
tems require an energy source in order to be in a steady
and the external gravitational force much affects their
namics.

To focus on the dissipative features, a smooth inela
hard sphere~IHS! model is often used as an ideal model. T
freely cooling granular fluid has been studied as an id
dissipative particle system in the absence of external fo
Since the system is only composed of an inelastic h
sphere and no relevant energy scale exists, the restitu
coefficient between collision particles is the only parame
in terms of nonequilibrium. The assumption of an inelas
hard sphere potential is also employed in kinetic theo
which facilitates comparisons between theory and simu
tion. In order to construct the theory of the macroscopic p
nomenology in nonequilibrium dissipative particle syste
an IHS model is the most promising as a microscopic mo
A linear stability analysis of hydrodynamic equations f
IHS model has revealed that the initial spatially homog
neous cooling state is unstable in the formation of vorti
and clusters. The shearing~vortex! and cluster instabilities
were theoretically predicted and were tested by molec
dynamics~MD! simulations@2#.

Since the total energy is monotonically decreasing in
freely evolving process, a steady state in terms of ene
fluctuation can be realized by scaling the velocity of the
tire particle to the total energy remaining constant@3#. Here,
we introduce the new-scaled timets which is described by

ts5E
0

t dt

b~ t !
, b~ t !5AT~0!/T~ t !, ~1!

where T(t) is the average kinetic energy per particle as
function of usual timet. The great advantage of this scalin
operation is that the trajectories of particles do not cha
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compared with the nonscaled case in case of hard sp
system. Therefore, one simply replaces the usual timet with
the new-scaled timets . This operation is the same as th
well-known velocity scaling method@4# in the usual MD
simulation, in which the velocities of all particles,vi(t), are
scaled following each collision by the factorb(t) @i.e.,
b(t)vi(t)] and the total energy is kept fixed strictly all ove
the time.

The two-dimensional~2D! turbulence in nature is a large
scale fluid motion in the atmosphere or ocean dynamics
earth. The most remarkable feature of 2D turbulence is
scribed by the enstrophy cascade dynamics, which is c
pletely different from that of 3D turbulence represented
the K41 theory. The existence of enstrophy cascade pro
was originally proposed by Kraichnan@5# and Batchelor@6#.
The theory expected that the enstrophy injected at a
scribed scale is dissipated at smaller scales, undergoin
cascading process at a constant enstrophy transfer rate
led to predicting ak23 spectrum for the energy, in a range
scales extending from the injection to the dissipative sc
The granular kinetic energy spectrum in connection with
fluid turbulence was first pointed out by Taguchi@7# in 2D
granular vibrated beds. He obtained the results of thek25/3

spectrum in his simulation with a few hundred particles. A
other important nature of 2D turbulence is the self-organiz
coherent vortices, which develop into larger ones through
merging process of vortices with the same sign of circu
tion.

In this paper, we especially focus on the velocity statist
and statistical laws of the fluid turbulence. To specify wha
the universal character in a dissipative system, both ma
scopic equation and microscopic dissipative particle, we p
formed extensive event-driven molecular dynamics simu
tion systematically on a freely cooling process in 2D IH
model with velocity scaling thermostat. We found a stro
similarity between the 2D IHS model and 2D Navier-Stok
~NS! fluid turbulence.

The freely 2D IHS~granular! model is so simple that the
system is completely characterized by only three dimens
less parameters: the restitution coefficientr, the total number
of disksN, and the packing fractionn. The system size in the
unit of disk diameterd is L/d5ApN/n/2. All the disks are
identical, i.e., the system is monodispersed. The collision
©2003 The American Physical Society01-1
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instantaneous and only binary collisions occur. When t
disks,i andj, with respective velocitiesvi andvj collide, the
velocities after the collision,vi8 andvj8 , are given by

vi85vi2
1
2 ~11r !@n•~vi2vj !#n, ~2!

vj85vj1
1
2 ~11r !@n•~vi2vj !#n, ~3!

wheren is the unit vector parallel to the relative position
the two colliding disks in contact. Our system consists
more than 250 thousand hard disks~up to a few million!
placed in a square box with periodic boundaries without a
external force. To perform such a large-scale simulation,
implemented the simple and efficient event-driven algorith
which can actually simulate more than a few million pa
ticles even in the personal computer@8#. Initially, the system
is prepared as the equilibrium state by the long enough
liminary run with the restitution coefficientr 51, in which
the density is uniform and the disk velocities are Maxwe
Boltzmann distribution. The packing fraction and the resti
tion coefficient (n,r ) were varied from dilute to dense an
within shearing regime, which is estimated by the criteri
of McNamara and Young@9#, respectively. In the case o
(N,n)5(1024,0.25), McNamara and Young have found th
the final states have three typical states, which are kine
shearing, and collapse regime. However, the spatiotemp
structure of the shearing regime is not known yet especi
at the macroscopic level.

The criterion of kinetic-shearing boundary in Ref.@9# is
based on the results of Jenkins and Richman@10#, in which
the high wave number cutoff for the unstable shear mo
was derived. On the contrary, the shearing-collapse boun
is estimated by 1D theoretical analyses for inelastic collap
which are known as the phenomenon on the divergenc
the collision number during a finite time. By using the r
gime criterion described by McNamara and Young@9#, one
can find that both regime boundaries become close to
unity in the thermodynamic limit. These theoretical expec
tions indicate that the system is always unstable even in
quasielastic limit. This fact implies the important conjectu
discussed later when we consider a large-scale IHS mod
the macroscopic fluid model.

In the large-scale simulations, the restitution coefficie
within the shearing regime become quasielastic (r;1). In
our simulations by changing various parameters within
shearing regime, the system evolves to the final steady s
after several stages. As described by McNamara and Yo
@9#, we can calculate the packing fractionn(x), velocity
u(x)5„ux(x),uy(x)…, and temperatureT(x) at any pointx.
Figure 1 presents a typical evolving process for four norm
ized properties as a function of new-scaled timets in the 2D
IHS model. During the relaxation process, four stages can
distinguished. After the homogeneous cooling state~HCS!
continues for a certain time from initial thermal equilibriu
state ~first stage!, the short-range velocity correlation fo
each time~i.e., both precollisional and postcollisional velo
ity correlation!, within the distance(xu(x)•u(x8), sharply
deviates from zero~solid line in Fig. 1!, where x8 is the
location aroundx with a distance of disk diameterd ~second
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stage!. Note that there are several works on the existence
the short-range velocity correlations even in HCS@11,12#.
Our simulation also seems to show that velocity correlat
‘‘gradually’’ increases from the beginning of simulation i
the first stage. Therefore, it might be difficult to determi
the exact time between first and second stages. In this s
coherent vortices self-organize and the coherent vortices
velop into larger ones through the mutual confluence and
merging process among vortices with the same sign of
culation@Fig. 2~a!#. These self-organized vortices were foun
first by McWilliams @13# in the direct numerical simulation
~DNS! of 2D NS fluid turbulence. In the third stage, th
density fluctuationn rms ~dotted line in Fig. 1!, which is cal-
culated by the square root of the space average@n(x)
2n#2, exhibits instability compressive flow@Fig. 2~b!#. Fi-
nally, steady state is realized~fourth stage!. In the final
steady states, the spatial correlation of inelastic hard di
which gradually increases from the beginning of simulatio
might reach beyond the system size and begin to inter
with each other through the periodic boundary condition.
our simulations, in the shearing regime, there is no sign
the inelastic hard disks assembling to one cluster during
simulation time. This is because the shear mode expande
the whole system might be stable through the perio
boundary condition. Therefore, we call them ‘‘final stea
states.’’ We found there are four characteristic final stea
states, which are shear~laminar, oscillating, and turbulent!
and vortex~one pair of vortices with opposite sign of circu
lation! flows, by changing both packing fraction and the re
titution coefficient within the shearing regime, systema
cally. Vortex flows of final pattern are also observed in t
DNS simulation for 2D incompressible turbulence with t
periodic boundary condition.

FIG. 1. The time evolution of various properties from an eq
librium, which are density fluctuation~dotted line!, velocity corre-
lation within a short distance~solid line!, anisotropy of total veloc-
ity ~dot-dashed line!, and enstrophy~dashed line!, respectively. The
O(ts) indicated four normalized properties as a function ofts . The
parameters are fixed at (r ,N,n)5(0.991 09,5122,0.60) during the
simulation. An inset in the below-left-hand corner shows the ea
stage of time evolution when shearing and clustering instab
appears.
1-2
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FIG. 2. ~Color! The typical snapshots for coherent vortices and turbulent clustering patterns are shown.~a! The absolute vorticity field
after 1200 collisions per particle with (r ,N,n)5(0.994 52,640 000,0.65). The self-organized coherent vortices in the vorticity field g
spontaneously from the initial equilibrium state.~b! The density field after 3590 collisions per particle in inelastic hard disk system
(r ,N,n)5(0.997 25,2 560 000,0.65). The turbulent compressive flow appears in density field.
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The velocity anisotropyA5(@ux(x)22uy(x)2#/@ux(x)2

1uy(x)2#, in which one can distinguish the final state
shear (A521 or 1) or vortex (A50) flows, and the enstro
phy Z5(uv(x)u2, wherev(x)5rot u(x), are also plotted
by dot-dashed line and dashed line in Fig. 1, respectively.
confirmed that the total vorticity(xv(x) is zero throughout
the simulation.

The 2D fluid turbulence has different characters on
statistical law between forced and freely decaying cas
However, in the granular case, no systematic considera
seems to exist yet. In the previous studies related to en
spectrum in granular material, energy injections~thermostat!
are driven by the vibration cycle@7# and the periodical-
stochastic thermostat@14#. These energy injections resemb
those of forced fluid turbulence. On the other hand, veloc
scaling thermostat@3#, in which the system is driven continu
ously, is thought as corresponding to a freely decaying c
because the statistics itself does not change by introdu
the new-scaled timets . Actually, we found that the energ

FIG. 3. Energy spectra of the velocity field are plotted for ea
stage. The parameters are at (r ,N,n)5(0.99109,5122,0.60).
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spectra~power spectra of velocity field! in the 2D IHS model
with the velocity scaling thermostat are close to the expe
tion of Kraichnan-Batchelor theory@E(k);k23# after the
third stage~Fig. 3!. Therefore, our simulations show the e
strophy cascade, as is expected by the theory for freely
caying 2D fluid turbulence. We have confirmed this pow
law by changing several different system sizes. In Fig. 3,
can estimate the characteristic spatial scale (kd;0.3) for
minimal dissipative domain~such as Kolmogorov scale in
the fluid turbulence!, which is composed of about a thousan
disks.

The first quantitative phenomenological observation
developed turbulence was shown by Richardson@15#, in
which the two-fluid particle separationR5ur i2r j u obeys
power law (̂ R2&;t3). We also show that the timets depen-
dence of the space-averaged squared two-disk separatio

h

FIG. 4. The evolving squared two-particle separation in terms
new-scaled timets is plotted. An inset in the upper-left hand corn
shows the time dependence of enstrophy decay. The paramete
at (r ,N,n)5(0.991 09,5122,0.60).
1-3
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2D IHS model strictly obeys the Richardson dispersion l
in the third stage~Fig. 4!. In the inset of Fig. 4, the enstroph
evolution is also plotted in terms of the new-scaled timets .
The enstrophy seems to decay as power-law behavior in
second stage, in which the coherent vortices self-organ
However, since the second stage itself is relatively short,
behavior needs further confirmation. As the intermittency
vorticity, McWilliams found that the probability distribution
function of vorticity significantly deviates from the Gaussi
@13#. By calculating flatness of vorticity (f v5^v4&/^v2&2)
in the 2D IHS model, our simulations also show the dev
tion from the Gaussian after the third stage.

How should we understand the obtained results? The
ferent points between fluid turbulence and granular tur
lence are compressibility, the origin of dissipation~i.e., vis-
cosity and inelasticity between particles!, and the ratio of
particle size and system size. Is the granular turbulence c
to fluid turbulence in the thermodynamic limit? Let us a
sume the extreme condition, that is, dense, thermodyna
and elastic limit. In this situation, a little amount of dissip
tion in the system always results in an unstable state. We
obtained the fact that the velocity correlation length~Kol-
mogorov scale! becomes larger in a dense~i.e., quasi-
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incompressible! system, but is less than system size when
consider the thermodynamic limit. Therefore, this extre
condition seems to really correspond to NS fluid turbulen

In this paper, we showed the remarkably similar aspe
on the statistical law of vorticity between 2D IHS~granular!
turbulence and 2D NS fluid turbulence. These results w
obtained by only solving a simple Newton’s equation syst
for inelastic hard disks in terms of an event-driven schem
From the microscopic dynamics of inelastic hard disk to
macroscopic fluid, it is important to study the origins of th
statistical law for turbulence at the microscopic level, b
there are very few studies so far from this point of view. T
discussion for three limits~dense, thermodynamic, and ela
tic! might make a connection between 2D granular turb
lence and 2D fluid turbulence.
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